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We study spatiotemporal intermittency �STI� in a system of coupled sine circle maps. The phase diagram of
the system shows parameter regimes with STI of both the directed percolation �DP� and non-DP class. STI with
synchronized laminar behavior belongs to the DP class. The regimes of non-DP behavior show spatial inter-
mittency �SI�, where the temporal behavior of both the laminar and burst regions is regular, and the distribution
of laminar lengths scales as a power law. The regular temporal behavior for the bursts seen in these regimes of
spatial intermittency can be periodic or quasiperiodic, but the laminar length distributions scale with the same
power law, which is distinct from the DP case. STI with traveling wave laminar states also appears in the phase
diagram. Solitonlike structures appear in this regime. These are responsible for crossovers with accompanying
nonuniversal exponents. The soliton lifetime distributions show power-law scaling in regimes of long average
soliton lifetimes, but peak at characteristic scales with a power-law tail in regimes of short average soliton
lifetimes. The signatures of each type of intermittent behavior can be found in the dynamical characterizers of
the system viz. the eigenvalues of the stability matrix. We discuss the implications of our results for behavior
seen in other systems which exhibit spatiotemporal intermittency.
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I. INTRODUCTION

The phenomena of spatiotemporal intermittency �STI�,
wherein laminar states which exhibit regular temporal behav-
ior co-exist in space and time with burst states of irregular
dynamics, is ubiquitous in both natural and experimental sys-
tems. Such behavior has been seen in experiments on con-
vection �1,2�, counterrotating Taylor-Couette flows �3�, oscil-
lating ferrofluidic spikes �4�, experimental and numerical
studies of rheological fluids �5,6�, and in experiments on
hydrodynamic columns �7�. In theoretical studies, STI has
been seen in partial differential equations such as the damped
Kuramoto-Sivashinsky equation �8� and the one-dimensional
Ginzburg-Landau equation �9�, in coupled map lattices
�CMLs� �10� such as the Chaté-Manneville CML �11�, the
inhomogeneously coupled logistic map lattice �12�, and in
cellular automata studies.

A variety of scaling laws have been observed in these
systems. However, there are no definite conclusions about
their universal behavior. The type of spatiotemporal intermit-
tency in which a laminar site becomes active �turbulent� only
if at least one of its neighbors is active has been conjectured
to belong to the directed percolation �DP� universality class
�13�. The dry state or the absorbing state in DP is identified
with the laminar state in STI, and the wet state of DP corre-
sponds to the active state in STI, with time as the directed
axis. However, a CML specially designed to exhibit STI by
Chaté and Manneville showed critical exponents signifi-
cantly different from the DP universality class �11�. This led
to a long debate in the literature �14–17�. It was concluded
that the presence of coherent structures, called solitons, were
responsible for spoiling the analogy with DP. The nature of
the transition to STI and the identification of the universality

classes of STI is still an unresolved issue, and is a topic of
current interest.

Earlier studies of the diffusively coupled sine circle map
lattice showed regimes of STI which were completely free of
solitons �17,18�. Two types of STI were seen along the bi-
furcation boundaries of the bifurcation from the synchro-
nized solution. The first type of STI showed an entire set of
static and dynamic scaling exponents which matched with
the DP exponents, and therefore was seen to belong convinc-
ingly to the DP class. The other type of intermittency, where
both the laminar and burst regions showed regular temporal
dynamics, was called spatial intermittency �SI�. The laminar
length distribution for this case showed characteristic power-
law behavior with its own characteristic exponent �=1.1.
This kind of behavior has been observed in the sine circle
map lattice as well as in the inhomogeneously coupled logis-
tic map lattice. In the case of the sine circle map lattice, both
types of intermittency, viz. STI of the DP class, and SI which
does not belong to the DP class, were seen in different re-
gions of the phase diagram. Moreover, distinct signatures of
the two types of behavior were picked up by the dynamical
characterizers of the system, i.e., the eigenvalues of the sta-
bility matrix. The eigenvalue spectrum was continuous in the
DP regime, but exhibited the presence of gaps in the SI re-
gime.

Different types of behavior are seen within the SI class
itself. The laminar state is synchronized in nature, but the
burst state can be periodic or quasiperiodic in its dynamical
behavior. The periodic burst states can have different tempo-
ral periods. Burst states of the traveling wave type are ob-
served at several points in the phase diagram. The distribu-
tion of laminar lengths shows power-law scaling in both
cases with the same exponent.

The SI regimes lie close to the bifurcation boundaries of
the synchronized solutions. The SI with traveling wave �TW�
bursts bifurcates further via tangent-period doubling bifurca-
tions, to STI with TW laminar states and turbulent bursts.
This type of STI is contaminated with coherent structures
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similar to the solitons that spoil the DP regime in the Chaté-
Manneville CML. The solitons induce crossover behavior
and the exponents in this regime take nonuniversal values.
The distribution of soliton lifetimes shows two characteristic
regimes. In the short soliton lifetime regime, the distribution
shows a peak which indicates the presence of a characteristic
time scale, and has a power-law tail. In the longer soliton
lifetime regime, the distribution has no characteristic scale
and shows pure power-law behavior. The solitons in this re-
gime also change the order of the phase transition in the
system.

The dynamical characterizers of the system show signa-
tures of the different types of temporal behavior of the burst
states. As mentioned earlier, the eigenvalue distribution of
the stability matrix is gapless for the STI with DP exponents,
whereas distinct gaps are seen in the distribution for the SI
class. The number of gaps in the eigenvalue distribution of
SI as a function of bin size shows power-law behavior. How-
ever, the scaling exponent is different for SI with quasiperi-
odic bursts and SI with periodic bursts. We discuss the im-
plications of our results for behavior seen in other systems
which exhibit spatiotemporal intermittency.

The organization of this paper is as follows. Section II
gives the details of the model and the phase diagram ob-
tained. The two universality classes of spatiotemporal inter-
mittency seen in this system, as well as the variations within
the SI class, are discussed in Sec. III. Section IV explains the
role played by the solitons in inducing a crossover behavior
in STI with traveling wave laminar state. The signatures
of each type of intermittent behavior is seen in the dynam-
ical characterizers of the system. This has been discussed in
Sec. V. We conclude with a discussion of these results and
their implications for other systems.

II. MODEL AND THE PHASE DIAGRAM

The coupled sine circle map lattice is defined by the evo-
lution equations

xi
t+1 = �1 − ��f�xi

t� +
�

2
�f�xi−1

t � + f�xi+1
t ��, �mod 1� , �1�

where i=1, . . . ,N and t are the discrete site and time indices,
respectively, with N being the size of the system, and � being
the strength of the coupling between the site i and its two
nearest neighbors. The local on-site map, f�x� is the sine
circle map defined as

f�x� = x + � −
K

2�
sin�2�x� . �2�

Here, K is the strength of the nonlinearity and � is the wind-
ing number of the single sine circle map in the absence of the
nonlinearity. The coupled sine circle map lattice has been
known to model the mode-locking behavior �19� seen com-
monly in coupled oscillators, Josephson Junction arrays, etc.,
and is also found to be amenable to analytical studies �20�.
The phase diagram of this system is highly sensitive to initial
conditions due to the presence of many degrees of freedom.
Studies of this model for several classes of initial conditions

have yielded rich phase diagrams with many distinct types of
attractors �19,20�.

We study the system with random initial conditions. The
system is updated synchronously with periodic boundary
conditions in the parameter regime 0���

1
2� and K=1

�where the single circle map has temporal period 1 solutions
in this regime�; the coupling strength � is varied from 0 to 1.

The phase diagram obtained using random initial condi-
tions is shown in Fig. 1 �21�. Spatially synchronized, tempo-
rally frozen solutions, where the variables xi�t� take the value
xi�t�=x�= 1

2� sin−1 2��
K for all i=1, . . . ,N, and for all t, are

marked by dots in Fig. 1. These solutions are seen over a
large section of the phase diagram and are stable against
perturbations. Cluster solutions, in which xi�t�=xj�t� for all
i , j belonging to a particular cluster, are identified by plus
signs �+� in the phase diagram. Regimes of spatiotemporal
intermittency of various kinds are seen near the bifurcation
boundary of the synchronized solutions. The various types of
STI seen are

�i� STI of the type in which the laminar state is the
synchronized fixed point x� defined earlier, and the turbulent
state takes all other values other than x� in the �0,1� interval,
is seen at points marked with diamonds ��� in Fig. 1. The
space-time plot is shown in Fig. 2�a�. This type of STI be-
longs to the directed percolation universality class.

�ii� STI with TW laminar state interspersed with tur-
bulent bursts is seen at points marked with boxes ��� in Fig.
1. The space-time plot of this type of solutions is shown in
Fig. 2�b�. Coherent structures traveling in space and time are
seen in these solutions. Such structures have also been seen
in the Chaté-Manneville CML and have been called solitons
in the literature.

�iii� Spatial intermittency with synchronized laminar
state and quasiperiodic bursts are seen at parameters marked

FIG. 1. The phase diagram for the coupled sine circle map lat-
tice evolved using random initial conditions. The spatiotemporally
synchronized solutions are represented by dots. The points at which
DP exponents have been obtained are marked by diamonds ���. At
points marked with triangles ���, SI with quasiperiodic bursts is
seen. SI with TW bursts is seen at points marked by crosses ���
and SI with period-5 bursts is seen at points marked with asterisks
�*�. STI with TW laminar states and solitons is seen at the points
marked by boxes ���. The cluster solutions are marked with plus
�+� signs.
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with triangles ��� in the phase diagram. The space-time plot
of this type of solution is shown in Fig. 2�c�.

�iv� Spatial intermittency with synchronized laminar
state and traveling wave �TW� bursts are seen at points
marked with crosses ��� in the phase diagram. The space-
time plot is shown in Fig. 2�d�. SI with synchronized laminar
state and period-5 bursts are seen at points marked with as-
terisks �*� in the phase diagram.

The identification of the universality classes of the differ-
ent types of intermittency seen in this system has been par-
tially carried out earlier. STI with synchronized laminar

states and turbulent bursts has been clearly established to
belong to the directed percolation �DP� class �17,18�. How-
ever, the other types of intermittency seen in the parameter
space do not belong to the DP class. We analyze these in the
next section.

III. UNIVERSALITY CLASSES IN THE SYSTEM

It is interesting to note that the system under study exhib-
its spatiotemporal intermittency belonging to a distinct uni-
versality class at different values of the parameters. The two

FIG. 2. The space-time plots of the different types of STI seen in the phase diagram. The lattice index i is along the x axis and the time
index t is along the y axis. The space-time plots show �a� STI with synchronized laminar state interspersed with turbulent bursts seen at
�=0.06, �=0.7928. �b� STI with TW laminar state and turbulent bursts with solitons seen at �=0.037, �=0.937. �c� SI with synchronized
laminar state and quasiperiodic bursts seen at �=0.031, �=0.42. �d� SI with synchronized laminar state and TW bursts observed at �
=0.019, �=0.9616.
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distinct classes obtained so far are regimes of STI which
belong to the DP class and regimes of SI which do not be-
long to the DP class. We discuss each of these in further
detail.

A. STI of the DP type

It has been shown convincingly that STI with synchro-
nized laminar state interspersed with turbulent bursts �seen at
points marked with � in Fig. 1� belongs to the DP univer-
sality class �17,18�. The infective dynamics of the turbulent
bursts wherein the turbulent site either infects the adjacent
laminar sites, or dies down to the laminar state, is similar to
the behavior seen in directed percolation �22�. Since no
spontaneous creation of turbulent bursts takes place, the
laminar state forms the absorbing state and time acts as the
directed axis. The entire set of static and dynamic scaling
exponents obtained in this parameter regime match with the
DP exponents which are defined in the Appendix. The expo-
nents obtained, after averaging over 103 initial conditions, at
three such parameter values are listed in Table I. The com-
plete set of exponents and their definitions have been re-
ported in Refs. �17,18�. The distribution of laminar lengths
also shows a scaling behavior of the form P�l�� l−�, with an
associated exponent, ��1.67. The laminar length distribu-
tion obtained, after averaging over 50 initial conditions, at
�=0.06, �=0.7928 has been plotted in Fig. 3�a�. The size of
the lattice studied was 104.

A clean set of DP exponents is obtained for the STI with
synchronized laminar state seen in this parameter regime as
these regimes are completely free from the presence of co-
herent solitonlike structures which could bring in long-range
correlations in the system and thereby spoil the DP behavior.
In fact, in the case of the STI with synchronized laminar
state, no solitons have been observed for this model in the
range of parameters studied. However, the STI with traveling
wave laminar states seen at the parameter values marked
with boxes in the phase diagram does show the presence of
solitons as seen in the space-time plot of Fig. 2�b�. These
solitons could be responsible for nonuniversal exponents and
crossover behavior in this regime. This behavior is discussed
in detail in Sec. IV. In the remainder of the present section
we will discuss the second universality class seen for the

present model, viz. that of spatial intermittency.

B. Spatial intermittency

We now discuss the other type of intermittency, seen in
this system viz. spatial intermittency. Spatial intermittency is
a distinct class of STI in which the temporal behavior of both
the laminar and burst states is regular. The infective dynam-
ics characteristic of the DP class is absent here, and the burst
states do not infect the laminar states even when they are
nearest neighbors. Spatial intermittency is a long lived phe-
nomenon and the spatially intermittent state persists for time
scales which are much longer than the time scales on which
the STI states die down to a uniform laminar background.
Two different types of spatial intermittency have been seen
in this system. In both types of SI, the laminar state is the
synchronized fixed point x� defined earlier. However, the
burst states are different and may be either quasiperiodic
�marked by triangles in the phase diagram� or periodic in
their temporal behavior.

1. SI with quasiperiodic bursts

Spatial intermittency, in which the temporal behavior of
the burst states is quasiperiodic in nature, has been seen at
points marked with triangles ��� in Fig. 1. The space-time
plot has been shown in Fig. 2�c�. These burst states are non-
infective in nature, i.e., the probability of the burst state in-
fecting the nearby laminar state is zero. Therefore the lami-
nar states remain laminar forever. Hence, after an initial
transient, the order parameter of the system, which is defined
as the fraction of nonlaminar sites in the lattice, is a constant.
The time series of the burst states at different parameter
values, at a typical burst site, was studied using power spec-
trum analysis. The power spectrum obtained at �=0.058,
�=0.291 and �=0.0495, �=0.3178 has been shown in Fig.
4. As can be seen from Fig. 4�a�, the peaks are seen at �1,
�2, �1+�2, and at m�1+n�2. This kind of behavior is typi-
cal of a quasiperiodic state. Hence we confirm that a quasi-
periodic burst state is seen at �=0.058, �=0.291.

The laminar length distribution of this type of SI shows a
scaling behavior of the form P�l�� l−� with an associated
exponent ��1.1. The laminar length distribution at param-

TABLE I. The static and dynamic exponents obtained in the DP regime at three of the points marked with diamonds ��� in the phase
diagram are shown in the above table. The universal DP exponents are listed in the last row. The exponents � and 	 have been calculated
using the hyperscaling relations. The data have been collected for a 1000 site lattice and are averaged over 1000 initial conditions. The
definitions of the DP exponents are given in the Appendix .

Static and dynamic scaling exponents for the STI of the DP class

Bulk exponents Spreading exponents

� �c��� z � /	z � 	 
� � 
 � zs

0.060 0.7928 1.59 0.17 0.293 1.1 1.51 1.68 0.315 0.16 1.26

0.073 0.4664 1.58 0.16 0.273 1.1 1.50 1.65 0.308 0.17 1.27

0.065 0.34949 1.59 0.16 0.273 1.1 1.50 1.66 0.303 0.16 1.27

Error bars 0.01 0.01 0.01 0.01 0.001 0.01 0.01

DP 1.58 0.16 0.28 1.1 1.51 1.67 0.313 0.16 1.26
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eters ��=0.04, �=0.402� has been plotted in Fig. 3�b�. The
values of � obtained for this type of SI at different values of
�� ,�� have been listed in Table II. The scaling exponent �
obtained for this type of SI is clearly different from that of
the DP class ��DP=1.67�.

Second, the transition to SI from a completely synchro-
nized state is a first order transition unlike the transition to
STI belonging to the directed percolation class which shows
a second order transition. This can be seen in Fig. 5�a� in
which the order parameter of the system m, which is defined

as the fraction of burst states in the lattice, has been plotted
as a function of the coupling strength �. The order parameter
m increases continuously with � in the case of STI of the DP
class, signalling a second order transition, whereas m shows
a sharp jump with � in the case of SI with quasiperiodic
bursts, indicating that a first order transition takes place in
the case of SI.

FIG. 3. The log-log �base 10� plot of the laminar length distri-
bution for �a� STI of the DP class obtained at �=0.06, �=0.7928.
The exponent � is 1.681. �b� SI with quasiperiodic bursts obtained
at �=0.04, �=0.402. The exponent � is 1.10. �c� SI with TW bursts
obtained at �=0.019, �=0.9616. The exponent obtained is 1.08.
The data have been obtained for a 104 site lattice and are averaged
over 50 initial conditions.

FIG. 4. The power spectrum �F����2 of the time series of the
burst state seen at �a� �=0.058, �=0.291 and �b� �=0.0495, �
=0.3178. The time series shown in �a� exhibits quasiperiodic behav-
ior and the time series shown in �b� is periodic in nature.

TABLE II. The table shows the laminar length distribution ex-
ponent � calculated for SI with quasiperiodic bursts �marked by
triangles ��� in Fig. 1� for a lattice of size N=104 and averaged
over 50 initial conditions. The exponent � is the exponent associ-
ated with the number of gaps, Ng�l�� l−� in the eigenvalue distri-
bution, where l is the bin size chosen. The frequencies, � inherent
in the time series of the burst state are also listed and are of the
form �1, �2, and �1+�2.

Spatial intermittency with quasiperiodic bursts

� � � � �

0.005 0.520 1.08±0.01 1.07±0.01 0.007, 0.014, 0.022

0.010 0.505 1.13±0.01 1.06±0.01 0.027, 0.054, 0.081

0.015 0.480 1.11±0.03 1.14±0.02 0.037, 0.073, 0.110

0.035 0.418 1.10±0.05 1.43±0.03 0.110, 0.230, 0.340

0.040 0.402 1.10±0.04 1.31±0.01 0.150, 0.230, 0.380

0.044 0.373 1.09±0.03 1.18±0.03 0.060, 0.120, 0.180

0.059 0.286 1.16±0.02 1.07±0.02 0.066, 0.133, 0.200
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2. SI with periodic bursts

Spatial intermittency with periodic bursts forms the sec-
ond class of SI. Two distinct burst periods have been ob-
served in the phase diagram. Bursts of period 5 have been
seen at the points marked by asterisks �*� in the phase dia-
gram.

Figure 4�b� shows that peaks are seen in the power spec-
trum of the burst state time series at �=0.2 and higher har-
monics. This confirms that the burst states have period 5 at
�=0.0495, �=0.3178, which is one of the points marked by
asterisks in the phase diagram.

Bursts of spatial period 2, temporal period 2, of the trav-
eling wave �TW� type are seen at the points marked by
crosses ��� in the phase diagram. The laminar state in both
cases is the spatiotemporally synchronized fixed point x�.
The space-time plot of these SI with TW burst solutions at
�=0.019, �=0.9616 is shown in Fig. 2�d�. The bursts are
noninfective in nature in this type of SI as well. The scaling
exponent, � associated with the laminar length distribution at
different parameter values in this regime have been listed in
Table III for both TW and period-5 bursts. The laminar
length distribution exponent obtained in this regime is

��1.1 �see Fig. 3�. The transition to SI with TW burst state
from a spatiotemporally synchronized state is also a first or-
der transition as has been shown by the abrupt jump in the
order parameter m with change in the coupling strength �
�Fig. 5�b��.

It is thus clear that SI does not belong to the DP univer-
sality class. The scaling exponent �=1.1 for laminar lengths
for the SI is distinctly different from the DP exponent
�=1.67. We note, however, that the nature of the bursts, viz.
periodic or quasiperiodic, has no effect on the value of the
exponent �. We hence conclude that SI with periodic as well
as quasiperiodic bursts belong to the same class. A similar
value of the laminar length distribution exponent ���1.1�
has been reported for spatial intermittency in the inhomoge-
neously coupled logistic map lattice �12�. Thus spatial inter-
mittency appears to constitute a distinct universality class of
the non-DP type.

Therefore two distinct universality classes of spatiotem-
poral intermittency, viz. directed percolation and spatial in-
termittency, are seen in the coupled sine circle map lattice in
different regions of the parameter space. The reasons for the
appearance of these two distinct classes may lie in the long-
range correlations in the system at different parameter val-
ues.

IV. ROLE OF SOLITONS IN STI WITH TW
LAMINAR STATE

As mentioned in Sec. III A, in addition to spatiotemporal
intermittency with synchronized laminar states, the phase
diagram of our model also shows spatiotemporal intermit-
tency with TW laminar states and turbulent bursts at the
points marked by boxes in the phase diagram. The lattice
dies down to the absorbing TW laminar state from random
initial conditions asymptotically. The STI with TW laminar
states seen in this model appears as a result of a tangent-
period doubling bifurcation from the SI with TW bursts as
can be seen from Table IV.

FIG. 5. The order parameter m vs ��−�c� plotted for STI of the
DP class at �=0.06 in �a�. The inset figure shows the log-log �base
10� plot of m vs ��−�c�. The exponent obtained is �
=0.296±0.027. �b� shows m vs ��−�c� plotted for SI with TW
bursts at �=0.042 ��� and SI with quasiperiodic bursts at �
=0.031 ���. SI shows a first order transition whereas DP class
shows a second order transition. The data have been collected for a
5000 site lattice and are averaged over 1000 initial conditions.

TABLE III. The table shows the laminar length distribution ex-
ponent � calculated for SI with periodic bursts �marked by crosses
��� and asterisks �*� in Fig. 1� for a lattice of size N=104 and
averaged over 50 initial conditions. The exponent � is the exponent
associated with the number of gaps, Ng�l�� l−� in the eigenvalue
distribution, where l is the bin size chosen. The frequencies � in-
herent in the time series of the burst state are also listed.

Spatial intermittency with periodic bursts

� � � � �

0.019 0.9616 1.08±0.04 1.18±0.04 0.5

0.025 0.9496 1.08±0.02 1.12±0.02 0.5

0.037 0.9254 1.17±0.02 1.07±0.01 0.5

0.042 0.9148 1.13±0.02 1.10±0.04 0.5

0.047 0.3360 1.13±0.02 1.02±0.01 0.2, 0.4

0.0495 0.3178 1.15±0.04 1.03±0.02 0.2, 0.4

0.054 0.2936 1.17±0.03 1.02±0.02 0.2, 0.4
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Immediately after the bifurcation, apart from turbulent
states, coherent structures, which have been called solitons,
are seen in the TW laminar background. These structures
have been marked in the space-time plot of this type of STI
in Fig. 2�b�. The solitons travel through the lattice with a
velocity v=1/ t� such that for a right moving soliton xi

t

=xi+1
t+t�, and xi

t=xi−1
t+t� for a left moving soliton. Here, i and t are

the site and time indices, respectively. In this model, the left
and right moving solitons occur in pairs and hence they an-
nihilate each other. When these solitons collide, they either
die down to the TW laminar state or give rise to turbulent
bursts. Such coherent structures have been seen earlier in the
Chaté-Manneville CML �14�, where these solitons were re-
sponsible for spoiling the DP behavior and were even ca-
pable of changing the order of the transition.

Table V lists the laminar length exponents seen at differ-
ent parameter values in the solitonic regime. The exponent
values listed here vary from 1 to 1.5 at different points in the
solitonic regime. Additionally, the escape time  which is
defined as the time taken for the lattice to relax to a com-
pletely laminar state, starting from random initial conditions,
does not show power-law scaling as a function of L for any
value of the parameters �see Fig. 6�. It is possible that these
apparently different exponents can be explained by scaling
corrections, although the exponent values listed in the table
are stable over lattice sizes from 2000 to 20 000 sites. On the
other hand, the presence of solitons may contribute to genu-

inely nonuniversal behavior. This merits further investiga-
tion.

The soliton lifetimes and velocities depend on the cou-
pling strength � and �. The distribution of soliton lifetimes is
shown in Fig. 7. As the coupling strength � increases, the
velocity v of the solitons is found to increase. Therefore
solitons with larger velocities collide earlier with each other,
and hence have shorter lifetimes. The distribution of soliton
lifetimes shows a peak in the short lifetime regime indicating
the presence of a characteristic soliton lifetime c. However,
the tail of the distribution falls off with power-law behavior
with an exponent 2.84. For low values of �, where the soliton
velocities are smaller, there is no peak or characteristic life-
time in the distribution, and the entire distribution of soliton
lifetimes scales as a power law with exponent �1.1 �see Fig.
7�. It is seen that the exponent � for the laminar lengths
decreases as the lifetimes decrease and the turbulent spread-
ing in the lattice decreases �see Table VI�.

The spreading dynamics in this type of STI was studied
by introducing a cluster of turbulent seeds in a completely
absorbing background. The two dynamic quantities �i� N�t�
the fraction of turbulent sites in the lattice at a time t, and �ii�
the survival probability P�t�, which is defined as the fraction
of initial conditions at time t which show a nonzero number
of active sites, were studied at �=0.035 and �=0.933, 0.943,
0.95, and 0.962. These have been plotted in Figs. 8�a� and
8�b�, respectively. It can be seen from the figure that the
fraction of turbulent sites N�t� at a given time t decreases as
the coupling strength � is increased. We see a similar de-
crease in the fraction of initial conditions which survive, P�t�
with increase in �. The data are averaged over 1000 initial
conditions.

Therefore we can conclude that the extent of spreading in
the lattice decreases as the lifetime of the soliton decreases
�with increase in ��. Since the distribution of laminar lengths
is an indirect measure of the spreading in the lattice, we see
that the varying average soliton lifetimes influence the dis-
tribution of laminar lengths and contribute to the existence of
a variety of exponents here. Conversely, the soliton lifetime
distributions have been plotted in Fig. 7�b� for parameters
where the exponents � for the laminar length distributions

TABLE IV. The largest positive and largest negative eigenvalues
observed when SI with TW bursts �marked with crosses in the
phase diagram� bifurcates to STI with TW laminar states �marked
with boxes�. The solution changes through a tangent-period dou-
bling �TP� bifurcation.

Bifurcations from SI with TW bursts

� � Eigenvalues Type of bifurcation

0.0100 0.982 1.685, −1.618 TP

0.0210 0.960 1.361, −1.222 TP

0.0305 0.943 1.752, −1.535 TP

0.0410 0.920 1.623, −1.309 TP

TABLE V. The laminar length distribution exponent � obtained
for different values of the coupling strength � and for different �’s
in the STI with TW laminar state and turbulent bursts regime. The
data have been collected for a lattice of size N=104 and have been
averaged over 50 initial conditions.

Laminar length exponents in the solitonic regime

�=0.035 �=0.037

� � � �

0.933 1.53±0.01 0.930 1.50±0.02

0.943 1.40±0.01 0.937 1.31±0.05

0.950 1.17±0.01 0.950 1.17±0.01

0.962 1.02±0.01 0.962 1.02±0.00

FIG. 6. The log-log �base 10� plot of escape time  plotted as a
function of the lattice size L at �=0.037 and at �=0.937 ���,
0.938 ���, and at �=0.939 ���. The data are averaged over 1000
initial conditions.
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take similar values. The soliton lifetime distributions col-
lapse over each other as expected.

We note again that the STI with TW laminar state shows
no soliton free regime, and the DP regime where the laminar
state is the synchronized state is completely soliton free.

Hence no direct comparison of the exponents of the STI with
synchronized laminar state and STI with TW laminar state is
possible at present.

FIG. 7. �a� The log-log �base 10� plot of distribution of soliton
lifetimes at �=0.035 and at �=0.933 ��=1.53�, �=0.943 ��
=1.40�, �=0.95 ��=1.14�, and at �=0.962 ��=1.02�. The exponent
� depends on the soliton lifetimes. �b� The log-log �base 10� plot of
the soliton lifetime distribution at �=0.035, �=0.943 �diamonds�;
�=0.037,�=0.937 �pluses�, and at �=0.04, �=0.9323 �boxes�.
The laminar length distribution exponent � is �1.3 at all these
points. Hence the soliton lifetimes collapse onto each other. �c� The
soliton lifetime distribution seen in the short soliton lifetime regime
at �=0.037, �=0.962. A peak is seen at the characteristic time scale
c=20. The distributions have been obtained after evolving a lattice
of size 500 over 20 000 time steps and 50 initial conditions.

TABLE VI. The exponents obtained in the short and long soli-
ton lifetime regimes. Here, � is the laminar length distribution ex-
ponent. A characteristic time scale c is seen in the short soliton
lifetime regime. Tmax is the largest soliton lifetime observed and �
is the exponent associated with the soliton lifetime distribution.

Soliton lifetimes in STI with TW laminar state

Regime � � � c Tmax �

Long soliton
lifetimes

0.035 0.933 1.53 19010 1.14

0.943 1.40 2481 1.35

0.037 0.930 1.50 16961 1.18

0.937 1.31 5782 1.31

Short soliton
lifetimes

0.035 0.962 1.02 15 305 2.84

0.037 0.962 1.02 20 413 2.88

FIG. 8. The log-log plot of �a� the fraction of turbulent sites N�t�
plotted as a function of t at �=0.035, and �b� the survival probabil-
ity P�t� plotted as a function of t at �=0.035. The extent of spread-
ing decreases with increasing coupling strength � or equivalently
with decreasing soliton lifetimes. The data has been obtained for a
1000 site lattice and has been averaged over 1000 initial conditions.
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V. DYNAMIC CHARACTERIZERS

It has been seen earlier that the signature of the DP and
non-DP behavior in this system can be seen in the dynamical
characterizers of the system, specifically in the eigenvalues

of the one-step stability matrix. Regimes of STI with DP
behavior exhibited a continuous eigenvalue spectrum,
whereas regimes of spatial intermittency showed an eigen-
value spectrum with level repulsion, where distinct gaps
were seen in the spectrum.

The linear stability matrix of the evolution equation �1� at one time step about the solution of interest is given by the
N�N dimensional matrix Mt

N, given below:

Mt
N =�

�sf��x1
t � �nf��x2

t � 0 . . . 0 �nf��xN
t �

�nf��x1
t � �sf��x2

t � �nf��x3
t � 0 . . . 0

0 �nf��x2
t � �sf��x3

t � . . . 0 0

� � � � � �
�nf��x1

t � 0 . . . 0 �nf��xN−1
t � �sf��xN

t �
	 ,

where �s=1−�, �n=� /2, and f��xi
t�=1−K cos�2�xi

t�. xi
t is the

state variable at site i at time t, and a lattice of N sites is
considered. The diagonalization of the stability matrix gives
the N eigenvalues at time t.

A. Eigenvalue distribution

The eigenvalue distribution P��� of the matrix above, in
all the cases studied here, have been obtained after averaging
over 50 initial conditions for 1000 lattice sites. Figure 9
shows the eigenvalue distributions for STI belonging to DP
class at the typical parameter value �=0.06, �=0.7928 �a�,
SI with quasiperiodic bursts at the typical value �=0.04, �
=0.402 �b�, and SI with TW bursts at �=0.025, �=0.9496
�c�. The bin size chosen is 0.005. It is clear from the figure
that the eigenvalue distribution of the DP class at this value
of bin size is continuous whereas distinct gaps can be seen in
the distribution for the spatial intermittency class for both
quasiperiodic and periodic bursts.

For the case of the SI, the number of vacant bins in the
eigenvalue distribution Ng�l� scales as a power law Ng�l�
� l−� where l is the bin size �Fig. 10�. However, the exponent
� depends on the inherent dynamics of the burst states. The
exponent � for SI with quasiperiodic bursts have been listed
in Table II and the exponents for SI with periodic bursts are
listed in Table III.

Within the SI class, the value of � is seen to be stable
within each period for the periodic bursts �see Fig. 10�. In the
quasiperiodic case, the natural frequencies of the dynamics
are different at different values of the parameter and hence �
values are different for different values of the parameters. It
is also useful to track the temporal evolution of the largest
eigenvalue to identify the signatures of the differences be-
tween these three cases.

B. Temporal evolution of the largest eigenvalue

The temporal evolution of the largest eigenvalue of the
stability matrix �m with t contains information about the dy-

namical behavior of the burst states. The time series of the
largest eigenvalue was obtained for the three cases: STI of
the DP class, SI with quasiperiodic bursts, and SI with TW
bursts. After the initial transient �m settles down to the natu-
ral periods of the burst states. The power spectrum �F����2
picks out the inherent frequencies in the system. This is evi-
dent from Fig. 11 in which the power spectrum of the time
series of �m�t� has been plotted as a function of the frequen-
cies.

In the case of SI with QP bursts �Fig. 11�a��, peaks are
seen at �1, �2, �1+�2, and at m�1+n�2 �m ,n�0� as is
typical of a quasiperiodic behavior. However, in the case of
STI of the DP class, a broadband spectrum is obtained which
implies that the burst states contain many frequencies �Fig.
11�b��. In the case of SI with periodic bursts, peaks are seen
in the power spectrum at �=0.5 for SI with TW bursts �Fig.
11�c��, indicating period-2 temporal behavior, whereas the
peaks are seen at �=0.2 and 0.4 for the type of SI in which
the temporal behavior of the bursts is period 5.

Thus we note that DP behavior is associated with a broad-
band spectrum for the power spectrum of the temporal evo-
lution of the largest eigenvalue, as well as a gapless distri-
bution of eigenvalues, whereas the SI or non-DP behavior is
associated with the characteristic power spectrum of the tem-
poral nature of the burst states, i.e., periodic or quasiperiodic
behavior, and distinct gaps in the eigenvalue distribution.

VI. CONCLUSIONS

Thus spatiotemporal intermittency of several distinct
types can be seen in different regions of the phase diagram of
the coupled sine circle map lattice. STI is seen all along the
bifurcation boundaries of bifurcations from the synchronized
solutions. These bifurcations are of the tangent-tangent �TT�
and tangent-period doubling �TP� type. The universal behav-
ior of the system as typified by the laminar length exponents
is of two types—the directed percolation �DP� class and the
non-DP class. STI with synchronized laminar states belongs

SPATIOTEMPORAL INTERMITTENCY AND SCALING¼ PHYSICAL REVIEW E 74, 016210 �2006�

016210-9



convincingly to the DP class and can be seen after both TT
and TP bifurcations from the synchronized state. This class
of STI is remarkably free of the solitons which spoil the DP
behavior in other models such as the Chaté-Manneville
CML. Other regimes of the phase diagram show spatial in-
termittency �SI� behavior where the laminar regions show
power-law scaling and are periodic in behavior, and the burst
states show temporally regular behavior of the periodic and
quasiperiodic type. This type of intermittency is clearly not

of the DP type and has earlier been seen in the inhomoge-
neously coupled logistic map lattice.

In addition to the two regimes above, we also see STI
with traveling wave �TW� laminar state in some regions of
the parameter space. This kind of STI arises as the result of
a TP bifurcation from SI with synchronized laminar state and
TW bursts. This type of STI shows a variety of exponents.
These exponents are stable over a range of lattice sizes and
could arise due to scaling corrections, or to the presence of
solitons. The soliton lifetimes depend on the parameter val-
ues and their distributions show two characteristic regimes.
In the first regime, where typical lifetimes are short, the dis-
tribution peaks at short lifetimes showing the presence of a
characteristic soliton lifetime scale but has a power-law tail.
In the second regime, where soliton lifetimes are typically
larger, the distribution has no characteristic scale and shows
power-law behavior with an exponent in the range 1.1–1.2.

The dynamic characterizers of the system, namely, the
eigenvalues of the stability matrix, shows signatures of these
distinct types of behavior. The DP regime is characterized by
a gapless eigenvalue distribution and a broadband power
spectrum of the time series of the largest eigenvalue. For the
SI case, i.e., the non-DP regime, distinct gaps are seen in the
eigenvalue distribution, and the power spectrum of the tem-
poral evolution of the largest eigenvalue is characteristic of
periodic or quasiperiodic behavior depending on the tempo-
ral nature of the burst states.

FIG. 9. The eigenvalue distribution �bin size=0.005� for �a� STI
belonging to the DP class at �=0.06, �=0.7928, �b� spatial inter-
mittency with quasiperiodic bursts at �=0.04, �=0.402, and �c� SI
with TW bursts at �=0.025, �=0.9496. A section of the eigenvalue
distribution is magnified in the inset figures. Gaps are seen in the
spatial intermittency eigenvalue distributions whereas the eigen-
value distribution for STI does not show any such gaps. The data
have been obtained for a lattice of size N=1000 and have been
averaged over 50 initial conditions.

FIG. 10. The number of vacant bins Ng�l� plotted against the bin
size l on a log-log �base 10� scale for �a� SI with quasiperiodic
bursts, and �b� SI with periodic bursts. The exponent � associated
with Ng�l�� l−� is given in the figures.
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The origin of the different types of universal behavior in
different parameter regimes appears to lie in the long range
correlations in the system. These correlations in the system
appear to change character in different regimes of parameter
space leading to dynamic behavior with associated exponents
of the DP and non-DP types. In order to gain insight into the
nature of the correlations in this system, and the way in
which they change character in different parameter regimes,
we plan to set up probabilistic cellular automata which ex-
hibit similar regimes and to examine their associated spin
Hamiltonians �23�. Absorbing phase transitions are seen in

other CML’s �24,25� and in pair contact processes �26–28�.
Models of nonequilibrium wetting setup using contact pro-
cesses with long-range interactions also show DP or non-DP
behavior depending on the activation rate at sites at the edges
of inactive islands �29�. Similar ideas may apply to the be-
havior in our model as well. Solid on solid models also show
DP and non-DP transitions depending on specific forms of
binding, i.e., transition rates of the dynamics �30�. These
models are inspired by studies of the synchronization transi-
tion in CML’s �31,32� where transitions like the Kardar-
Parisi-Zhang transition are also seen. We hope to explore
these directions in future work.
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APPENDIX: DEFINITION OF DP EXPONENTS

The DP transition is characterized by a set of static and
dynamic critical exponents associated with various quantities
of physical interest.

1. Static exponents

�i� We first consider the escape time �� ,� ,L�, which
is defined as the time taken for the system starting from
random initial conditions to relax to a completely laminar
state. It is expected from finite-size scaling arguments that 
varies with the system size L such that

��,�� = 
log L laminar phase

Lz critical phase

exp Lc turbulent phase.

Hence at the critical value of the coupling strength �c, the
escape time  shows a power-law behavior, z being the as-
sociated exponent.

�ii� The order parameter m�t� associated with this tran-
sition is defined as the fraction of turbulent sites in the lattice
at time t. At �c, the order parameter scales as

m � �� − �c��, � → �+. �A1�

At t�, m�t� scales with t as m��c , t�� t−�/	z, where 	 is the
exponent associated with the spatial correlation length.

The exponent 	 is obtained by using the scaling relation

�L,�c� � �zf�L/�� , �A2�

where � is the correlation length which diverges as �
�� −	 and � is given by ��−�c�. Hence 	 is adjusted until the
scaled variables L�	 and �	z collapse onto a single curve.

�iii� The correlation function in space is defined as

Cj�t� =
1

L
�
i=1

L

�xi
txi+j

t  − �xi
t2. �A3�

At �c, Cj�t� scales as Cj�t�� j1−
�.

FIG. 11. The power spectrum of the time series of the largest
eigenvalue �m�t� at �a� �=0.058, �=0.291, where SI with quasi-
periodic behavior is seen, �b� �=0.06, �=0.7928, where STI of the
DP class is seen, and �c� �=0.026, �=0.948, where SI with TW
bursts is seen. Three main frequencies �1, �2, and �1+�2 are seen
in �a� whereas, a broadband spectrum is seen in the case of STI of
the DP class as seen in �b�. The spectrum of SI with TW shows a
peak at 0.5 as seen in �c�.
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�iv� The distribution of laminar lengths P�l� is an im-
portant characterizer of the universality class �11�. The lami-
nar lengths l are defined as the number of laminar sites be-
tween two turbulent sites. At criticality, the laminar length
distribution shows a power-law behavior of the form

P�l� � l−�. �A4�

� is the associated exponent, �DP being 1.67.

2. Dynamical exponents

To extract the dynamical exponents, two turbulent seeds
are placed in an absorbing lattice and the spreading of the

turbulence in the lattice is studied. The quantities associated
with critical exponents at �c are as follows:

�i� The number of active sites N�t� at time t, which
scales as N�t�� t
.

�ii� The survival probability P�t� defined as the frac-
tion of initial conditions which show a nonzero number of
active sites at time t. This scales as P�t�� t−�.

�iii� The radius of gyration R2�t�, which is defined as
the mean squared deviation of the position of active sites
from the original sites of turbulent activity. This scales as
R2�t�� tzs.
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